Fine Ice Sheet Margins Topography From Swath Processing of CryoSat SARIn Mode Data

Luca Foresta ¹ Noel Gourmelen ¹ Andrew Shepherd ² Maria Jose Escorihuela ³ Alan Muir ⁴ Kate Briggs ² Monica Roca ³ Steven Baker ⁴ Mark Drinkwater ⁵ Pete Nienow ¹

¹School of Geosciences, University of Edinburgh, United Kingdom

²University of Leeds, United Kingdom

³Isardsat, Barcelona, Spain

⁴MSSL, University College London, United Kingdom

⁵ESTEC, European Space Agency

EGU General Assembly 2014

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

In a nut-shell

What

Developing a dense elevation product from the ESA CryoSat mission so to improve spatial resolution of ice topography over small ice caps and ice sheet margins

Why

Ice topography is connected to climate High rate of melting and discharge over margins

How

Exploiting the full waveform of CryoSat SARIn mode data (the entire swath)

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

In a nut-shell

What

Developing a dense elevation product from the ESA CryoSat mission so to improve spatial resolution of ice topography over small ice caps and ice sheet margins

Why

Ice topography is connected to climate High rate of melting and discharge over margins

How

Exploiting the full waveform of CryoSat SARIn mode data (the entire swath)

In a nut-shell

What

Developing a dense elevation product from the ESA CryoSat mission so to improve spatial resolution of ice topography over small ice caps and ice sheet margins

Why

Ice topography is connected to climate High rate of melting and discharge over margins

How

Exploiting the full waveform of CryoSat SARIn mode data (the entire swath)

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

Importance of ice sheet margins

- Localized ice mass loss (concentrated at ice sheet margins)
- Global implications (e.g. sea-level rise)

Rate of change of surface elevation between 2003 and 2007 (Pritchard *et al.*, 2009)

Importance of ice sheet margins

- Localized ice mass loss (concentrated at ice sheet margins)
- Global implications (e.g. sea-level rise)

Rate of change of surface elevation between 2003 and 2007 (Pritchard *et al.*, 2009)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

- Continuous monitoring of land and marine ice fields' fluctuations
- SIRAL (SAR Interferometric Radar Altimeter)
- Microwave band, independent on:
 - weather conditions
 - sunlight exposure
- Orbit inclination: 92.02°
- Distinct modes of operations:
 - Low Resolution Mode (LRM)
 - Synthetic Aperture Mode (SAR)
 - Interferometric SAR (SARIn)

 Conclusions

Modes of operation

Image credit: ESA

All SARIn areas (purple) are characterized by sloping ice and/or rough topography

Fine Ice Sheet Margins Topography From Swath Processing of CryoSat SARIn Mode Data

SARIn mode

Along track SAR processing

Across track echo location

Image credit: ESA

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Previous work

Proof of concept using ASIRAS Interferometric Radar Altimeter. Hawley *et al.*, 2009

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Waveform example

 Outline
 Introduction
 Swath Processing
 Swath Spatial Coverage
 Validation exercise
 Conclusions

Waveform example with POCA highlighted

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Petermann - standard processing - 1 track

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Petermann - swath processing - 1 track

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Petermann - standard processing

Petermann - swath processing

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Processing scheme

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

Conclusions

Fine Ice Sheet Margins Topography From Swath Processing of CryoSat SARIn Mode Data

Suitable surface conditions (Gray et al, 2013)

Outline Introduction Swath Processing Swath Spatial Coverage Validation exercise Conclusions

Non-suitable surface conditions - 1

Non-suitable surface conditions - 1

Multiple reflections (e.g internal layers, rocks)

• Mask 1: correlation with optimal power waveform

Non-suitable surface conditions - 1

Multiple reflections (e.g internal layers, rocks)

• Mask 1: correlation with optimal power waveform

Outline Introduction Swath Processing Swath Spatial Coverage Validation exercise Conclusions

Non-suitable surface conditions - 2

Non-suitable surface conditions - 2

Flat surface \rightarrow multiple contributions to same 'bin'

• Mask 2: correlation with linear/quadratic fit

Non-suitable surface conditions - 2

Flat surface \rightarrow multiple contributions to same 'bin'

• Mask 2: correlation with linear/quadratic fit

Outline Introduction Swath Processing Swath Spatial Coverage Validation exercise Conclusions

Validation against ICESat DEM

Not masked

Fine Ice Sheet Margins Topography From Swath Processing of CryoSat SARIn Mode Data

Outline Introduction Swath Processing Swath Spatial Coverage Validation exercise Conclusions

Validation against ICESat DEM

Masked with correlation

Fine Ice Sheet Margins Topography From Swath Processing of CryoSat SARIn Mode Data

Validation against ICESat DEM

Masked with correlation and phase fit

Validation against IceBridge

Not masked

Validation against IceBridge

Not masked

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

Introduction

Swath Processing

Swath Spatial Coverage

Validation exercise

- Interferometric swath processing has the potential to increase spatial resolution of standard altimetry elevation products
- Validation exercises against ICESat and IceBridge data at the Jakobshavn glacier (Greenland) proved successful
- Some waveforms must be discarded because of not suitable surface conditions
- Validation exercises are ongoing to investigate effect of snow type, surface conditions and processing strategy on the quality of the product

- Interferometric swath processing has the potential to increase spatial resolution of standard altimetry elevation products
- Validation exercises against ICESat and IceBridge data at the Jakobshavn glacier (Greenland) proved successful
- Some waveforms must be discarded because of not suitable surface conditions
- Validation exercises are ongoing to investigate effect of snow type, surface conditions and processing strategy on the quality of the product

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

- Interferometric swath processing has the potential to increase spatial resolution of standard altimetry elevation products
- Validation exercises against ICESat and IceBridge data at the Jakobshavn glacier (Greenland) proved successful
- Some waveforms must be discarded because of not suitable surface conditions
- Validation exercises are ongoing to investigate effect of snow type, surface conditions and processing strategy on the quality of the product

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions

- Interferometric swath processing has the potential to increase spatial resolution of standard altimetry elevation products
- Validation exercises against ICESat and IceBridge data at the Jakobshavn glacier (Greenland) proved successful
- Some waveforms must be discarded because of not suitable surface conditions
- Validation exercises are ongoing to investigate effect of snow type, surface conditions and processing strategy on the quality of the product

Outline	Introduction	Swath Processing	Swath Spatial Coverage	Validation exercise	Conclusions
					(

Thank you for your attention